Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 30(11): 1609-17, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24526711

RESUMO

MOTIVATION: Automatic tracking of cells in multidimensional time-lapse fluorescence microscopy is an important task in many biomedical applications. A novel framework for objective evaluation of cell tracking algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2013 Cell Tracking Challenge. In this article, we present the logistics, datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark. RESULTS: The main contributions of the challenge include the creation of a comprehensive video dataset repository and the definition of objective measures for comparison and ranking of the algorithms. With this benchmark, six algorithms covering a variety of segmentation and tracking paradigms have been compared and ranked based on their performance on both synthetic and real datasets. Given the diversity of the datasets, we do not declare a single winner of the challenge. Instead, we present and discuss the results for each individual dataset separately. AVAILABILITY AND IMPLEMENTATION: The challenge Web site (http://www.codesolorzano.com/celltrackingchallenge) provides access to the training and competition datasets, along with the ground truth of the training videos. It also provides access to Windows and Linux executable files of the evaluation software and most of the algorithms that competed in the challenge.


Assuntos
Algoritmos , Rastreamento de Células/métodos , Benchmarking , Microscopia de Fluorescência
2.
Nat Methods ; 11(3): 281-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24441936

RESUMO

Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.


Assuntos
Interpretação de Imagem Assistida por Computador , Microscopia de Fluorescência/métodos , Interpretação de Imagem Assistida por Computador/normas , Microscopia de Fluorescência/normas
3.
Artigo em Inglês | MEDLINE | ID: mdl-25570230

RESUMO

In this paper we present a novel methodology for classifying cells by using a combination of dielectrophoresis, image tracking and classification algorithms. We use dielectrophoresis to induce unique motion patterns in cells of interest. Motion is extracted via multi-target multiple-hypothesis tracking. Trajectories are then used to classify cells based on a generalized likelihood ratio test. We present results of a simulation study and of our prototype tracking the dielectrophoretic velocities of cells.


Assuntos
Rastreamento de Células/métodos , Eletricidade , Saccharomyces cerevisiae/citologia , Algoritmos , Simulação por Computador , Eletrodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...